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Abstract

Based on the set of real numbers and the set of rotation factors, the constructions
of three and higher n-dimensional complex number spherical coordinate systems are re-
alized. The projections of complex numbers or position vectors from four-dimensional
space to three-dimensional space as well as from a higher n-dimensional space to a lower
dimensional space are conceived. The projections are consistent throughout regardless
of the dimensional levels and the generalization of the n-dimensional coordinate systems
are achieved with n=2 for two-dimensional plane, n=3 for three-dimensional space, n=4
for four-dimensions and so on. The generalization of transformation to n-dimensional
Cartesian coordinate systems from the spherical systems are obtained. The rotation
operations in the n-dimensional complex number spherical coordinate systems are suc-
cinct and efficient, and the results can be transformed back to Cartesian coordinate
systems, and vice versa.

1. Introduction

Hypercomplex numbers [3] are an extension to higher dimensions from the standard two-
dimensional complex numbers. One established example of hypercomplex numbers is the
quaternion number system by Hamilton [2], which is in four dimensions and non-commutative
for multiplication. There exist other hypercomplex systems [6–8]. These hypercomplex sys-
tems tend to be in Cartesian coordinate systems that are inconvenient for handling rotation
operations.

Furthermore, in general, there are restrictions with respect to commutative and asso-
ciative properties of hypernumbers in three and other higher dimensions, Ferdinand Georg
Frobenius [1, 4] proved that for a division algebra [4] over the real numbers to be finite-
dimensional and associative, it cannot be three-dimensional, and there are only three such
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division algebras: real numbers, complex numbers, and quaternions, which have dimension
1, 2, and 4 respectively.

The recent discovery of the causality origin of imaginary unit and the existence of rotation
factors by the author [5] provides a novel approach to construct complex number coordinate
systems for hypercomplex numbers, and gives rise to complex number spherical coordinate
systems that are generalizable to n-dimensions from 1, 2, 3, 4 to a higher positive-integer
n. This paper presents the construction of three-dimensional complex number spherical
coordinate system and extends the methodology to higher n-dimensional spaces. The re-
sults of efficient rotation operations conducted in the spherical coordinate systems can be
transformed back to Cartesian coordinate systems, and vice versa.

2. Position numbers and rotation factors in

relationship with complex numbers

2.1. Position vectors, position numbers, and rotation factors

In a two-dimensional plane, a point may be represented by a position vector, which has
a direction from the coordinate origin to the point itself, and has a magnitude that is equal
to the distance between the point to the origin. By the same token, this position vector
concept can be applied to three and higher n-dimensional spaces.

In the paper [5], for a two-dimensional plane, position numbers are introduced to represent
points in the plane. A position number representing a point has a direction that is also from
the coordinate origin to the point itself. The direction of a position number may be implicit
or implied without being explicitly denoted by an arrow, as there is no ambiguity with
respect to the implied direction. A position number, a position vector, or a vector formed
by two points in the plane, can be rotated by an angle specific rotation factor. Specifically,
the formula for a rotation factor q of angle θ is

q(θ) = eiθ (1)

where i is the orthogonal rotation factor (rotation factor of angle π
2
) and is equivalent to

the imaginary unit in the 2D complex plane. Multiplying a rotation factor q(θ) or eiθ to
a position number or a position vector makes the position point rotate counter-clockwise
by angle θ with the magnitude of the position number or the position vector unchanged.
A rotation factor has a unit magnitude of 1. It is noted that for a two-dimensional plane,
position numbers are equivalent to complex numbers.

All real numbers form a field [10]. The set of real numbers is denoted R [9]. The set of
rotation factors is defined as

E = {eiθ | θ ∈ R, 0 ≤ θ ≤ 2π} (2)

The concepts of position vectors, position numbers, and rotation factors may be extended
to three and higher n-dimensional spaces.
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2.2. Terminologies and conventions

Space: refers to Euclidean space.

Position vector: A position vector represents the position of a point in an n-dimensional
space with n=1 for the position in a one-dimensional axis, n=2 for the position in a two-
dimensional plane, and n=3 or higher for the position in a three or higher n-dimensional
space. The direction of a position vector is from the coordinate origin to the point represented
by the vector, and the magnitude of the vector is the distance between the point and the
origin.

Position number: Almost identical to a position vector in the representation sense, a
position number represents the position of a point in an n-dimensional space with n=1 for
the position in a one-dimensional axis, n=2 for the position in a two-dimensional plane, and
n=3 or higher for the position in a three or higher n-dimensional space. The direction of a
position number is from the coordinate origin to the point represented by the number, and
the magnitude of the number is the distance between the point and the origin.

Position vector and position number conventions: Here the terms position vector and
position number are interchangable for representing a point. For geometric representation,
vector arrow may be used for a position number to explicitly indicate the direction of the
position number.

Point of position vector or position number: means the point represented by the
position vector or the position number, and vice versa.

Direction of point, position vector, or position number: means the same direction
as the direction from the origin point to the point.

Rotating (or rotation of) point, position vector, or position number: means the
same as rotating a point to another position with respective position vector change or position
number change.

Applying a rotation factor to: means multiplying a rotation factor to a position vector
or a position number. Applying a rotation factor to a point means applying the factor to
the point’s position vector or position number.

Target of a rotation factor: means the position vector or the position number that a
rotation factor is applied to.

Position numbers, complex numbers, hypercomplex numbers: A position number
may also be called a complex number in a two-dimensional plane, or called a hypercomplex
number in a higher dimensional space. In essence, complex numbers and hypercomplex
numbers represent the positions of points in their respective planes or spaces. The position
concept is commonly known and clear. In this sense, the term, position number is mainly
used here.
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3. Position numbers in three-dimensional space

In [5], based on the set of real numbers R and the set of rotation factors E (2), the
construction of two-dimensional polar and Cartesian coordinate systems has been realized.
Next, with the same approach, the construction of three-dimensional spherical and Cartesian
coordinate systems by rotation factors is presented.

3.1. Position numbers in spherical coordinate system

In Figure 1, RE denotes a real number axis. Point O is the origin. ORi is an axis that
is orthogonal to the RE axis. Applying the orthogonal rotation factor i = ei

π
2 to any point

in the RE axis makes the point rotate counter-clockwise by angle π
2
and reach the ORi axis.

Thus, the i indicates the direction of the ORi axis, and ORi may also be called i axis. A
rotation factor eiθ of an arbitrary angle θ may be called i-based rotation factor as i is present
in the factor. The i and i-based rotation factor eiθ are associated with the ORi axis.

The ORj axis is orthogonal to the 2nd dimension axis-plane, which is formed by the RE axis
and the ORi axis. ORj has the direction of the cross product of the RE direction unit vector
and the ORi direction unit vector (right-hand rule). Applying orthogonal rotation factor j
to any point in the 2nd dimension axis-plane makes the point rotated to the ORj axis. Thus,
the j indicates the direction of the ORj axis and is associated with the axis. ORj may also
be called j axis.
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Figure 1. Construction of three-dimensional spherical and Cartesian coordinate systems by
rotation factors

Number r is a real number in the RE axis and represents the corresponding point in the
axis. Applying an i-based rotation factor eiθ to number r makes the point rotate by angle
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θ to position number p2r in the plane formed by the RE axis and the ORi axis. Thus, the
position number p2r is expressed as

p2r = reiθ (3)

Applying a j-based rotation factor ejϕ to position number p2r makes the point rotate by
angle ϕ to position number p in the plane formed by the p2r point and the ORj axis. That
is, p = p2re

jϕ. With this and (3), the position number p becomes

p = reiθejϕ (4)

Equation (4) gives the formula for three-dimensional position numbers in the spherical co-
ordinate system. The formula is surprisingly succinct and elegant.

3.2. Position numbers in Cartesian coordinate system

Next, the formula for three-dimensional position numbers in the Cartesian coordinate
system is derived.

In Figure 1, the coordinate for a specific point in the ORj axis is denoted by cj, where j is
the orthogonal rotation factor that indicates the direction of the ORj axis and c is a real
number. The line formed by the point cj and the point p is parallel to the line formed by
the origin O and the point p2r.

The point represented by position number p2 is in the plane formed by the RE axis and the
ORi axis. The line formed by the point p2 and the point p is parallel to the ORj axis. The
position number p2 has a magnitude of r2.

The coordinate for a specific point in the RE axis is denoted by a real number a. The line
formed by the point a and the point p2 is parallel to the ORi axis.

Similarly, the coordinate for a specific point in the ORi axis is denoted by bi, where i is
the orthogonal rotation factor that indicates the direction of the ORi axis and b is a real
number. The line formed by the point bi and the point p2 is parallel to the RE axis.

The above indicates that the position number p has a coordinate of a in the RE axis, a
coordinate of bi in the ORi axis, and a coordinate of cj in the ORj axis. That is

p = a + bi+ cj (5)

Equation (5) represents three-dimensional position numbers in Cartesian coordinate system.

The geometry in Figure 1 gives that c = rsin(ϕ), r2 = rcos(ϕ), a = r2cos(θ), and
b = r2sin(θ), which lead to

a = rcos(θ)cos(ϕ) (6)
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b = rsin(θ)cos(ϕ) (7)

c = rsin(ϕ) (8)

Equations (6), (7), and (8) represent the transformation from spherical coordinates to Carte-
sian coordinates.

With the transformation, Equation (5) becomes

p = r(cos(θ)cos(ϕ) + isin(θ)cos(ϕ) + jsin(ϕ)) (9)

From Equations (6), (7), and (8), the transformation from Cartesian coordinates to
spherical coordinates is represented by

r =
√
a2 + b2 + c2 (10)

θ = tan−1(
b

a
) (11)

ϕ = sin−1(
c

r
) (12)

3.3. Rotation operations being commutative

In Figure 1, the rotation factor eiθ is first applied to the number r in the RE axis, and
then is followed by the rotation factor ejϕ.
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Figure 2. The order of rotation operations being reversed
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Figure 2 is the same as Figure 1, except that the order of the operations by the two
rotation factors is reversed.

In Figure 2, applying the rotation factor ejϕ to number r in the RE axis makes the point
rotate by angle ϕ to position number p3r in the plane formed by the RE axis and the ORj

axis. The point represented by number r2 and the point represented by p3r form a line that
is parallel to the ORj axis. Then, applying the rotation factor eiθ to position number p3r

makes the point rotate by angle θ to position number p in the plane that is parallel to the
plane formed by the RE axis and the ORi axis. The final position is the point p, which is
the same as the point in Figure 1. That is

p = reiθejϕ = rejϕeiθ (13)

Equation (13) represents the two rotation factor operations being commutative.

3.4. Interaction between orthogonal rotation factors i and j

In Figure 1, the construction of the spherical and Cartesian has not involved the in-
teraction between the orthogonal rotation factors i and j. The result in (9) contains the
interaction information. By Euler’s formula, i = ei

π
2 and j = ej

π
2 . Then ij = ei

π
2 ej

π
2 be-

comes a position number with r=1, θ = π
2
, ϕ = π

2
. Inserting the values into Equation (9)

gives p = j. That is

ij = j (14)

By the same token, ji = ej
π
2 ei

π
2 is a position number with r=1, θ = π

2
, ϕ = π

2
. Equation (9)

gives p = j. That is

ji = j = ij (15)

The results in (14) and (15) can also be directly obtained from the geometric representa-
tion. In Figure 2, applying the orthogonal rotation factor j to any point in the i axis makes
the point rotate to the j axis. The point represented by i is in the i axis. Thus, ij = j. In
the same figure, on the other hand, applying the orthogonal rotation factor i to the point
p3r makes the point rotate to the plane formed by the ORi axis and the ORj axis. But if
ϕ = π

2
, p3r is in the j axis and applying i to p3r will not move the point. Thus, p3ri = p3r.

Let p3r = j, it follows that that ji = j.

In fact, any point in the plane formed by the RE axis and the ORi axis will rotate to the
ORj axis if the point is applied by the rotation factor j = ej

π
2 . In Figure 1, if ϕ = π

2
, point

p2r reaches the ORi axis. That is, p2re
j π
2 = p2rj = |p2r|j. Particularly, ejθ is in the plane

and has a unit magnitude. It will also rotate to the ORi axis if it is applied by j. That is

eiθj = j (16)

The result in (16) can also be obtained through Equation (9) by the coordinate transforma-
tion for position number eiθj = eiθej

π
2 with r=1, ϕ = π

2
.
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3.5. Obtaining spherical-to-Cartesian transformation by rotation factor multi-
plication algebra

A position number is represented by Equation (4) in spherical coordinate system. The
transformation of the position number into Cartesian coordinates is presented next. With
Euler’s formula for the rotation factor ejϕ in (4), it follows that

p = reiθ(cos(ϕ) + jsin(ϕ)) (17)

With multiplication algebra, Equation (17) becomes

p = r(eiθcos(ϕ) + eiθjsin(ϕ)) (18)

And with eiθj = j in (16) and Euler’s formula for eiθ, Equation (18) leads to

p = r(cos(θ)cos(ϕ) + isin(θ)cos(ϕ) + jsin(ϕ)) (19)

Equation (19) is the same as Equation (4). That is, the spherical-to-Cartesian transformation
has been achieved through rotation factor multiplication algebra.

3.6. Multiplication of position numbers

In spherical coordinate system represented by (4), let p1 = r1e
iθ1ejϕ1 be one position

number, and p2 = r2e
iθ2ejϕ2 be another.

As previously shown, the two rotation factors, eiθ and ejϕ are commutative for rotating a
position number or a position vector for that matter. The rotation of position number p1 by
p2 through its rotation factors, eiθ2 and ejϕ2 is commutative, and vice versa for the rotation
of position number p2 by p1. And r1 and r2 are positive real numbers and are commutative
in the multiplication of p1 and p2. That is, p1 · p2 = p2 · p1.

The multiplication of the two position numbers is

p1 · p2 = r1e
iθ1ejϕ1r2e

iθ2ejϕ2 (20)

With the rotation factors and the positive real numbers being commutative, it follows that

p1 · p2 = p2 · p1 = r1r2e
i(θ1+θ2)ej(ϕ1+ϕ2) (21)

Equation (21) indicates that the multiplication result is a position number with a magnitude
of r1r2, rotation factors eiθ

′
and ejϕ

′
where θ′ = θ1 + θ2 and ϕ′ = ϕ1 + ϕ2, as the sum of the

respective angles of rotation factors.

With (9), Equation (21) can be transformed to Cartesian coordinates as

p1 · p2 = r1r2(cos(θ1 + θ2)cos(ϕ1 + ϕ2) + isin(θ1 + θ2)cos(ϕ1 + ϕ2) + jsin(ϕ1 + ϕ2)) (22)
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In Cartesian coordinate system represented by (5), assume that one first has the position
numbers, p1 and p2 in Cartesian coordinates as p1 = a1 +b1i+ c1j, and p2 = a2 +b2i+ c2j.
For the multiplication of p1 ·p2, p1 and p2 may be first transformed into spherical coordinates
as p1 = r1e

iθ1ejϕ1 , and p2 = r2e
iθ2ejϕ2 . The multiplication is then performed in the spherical

system, and the result for Cartesian coordinates is given by Equation (22).

3.7. Vector rotations by rotation factors with coordinate system independence

It is important to note that rotation factors can be independent of coordinate systems
and can encourage one’s creativity for the novel utilization to achieve desired results.

O

θ

r

r

RE

ORi

OR j

p

ϕ

p'

k̂
α

e
kα

p

Figure 3. Vector rotation by rotation factor unassociated with the coordinate axes

With the same notations as those in Figure 1, Figure 3 illustrates a vector rotation by
rotation factor that is not associated with the coordinate axes.

A position number is equivalent to a position vector with the same direction and magni-
tude. In Figure 3, position numbers have been denoted with direction arrows and may also
viewed as the position vectors. The position number p now has been represented by a vector
with the direction pointing from the origin O to the point. Assume that there is another
point p′, and the angle between the position vectors of the two points p and p′ is α. One
wants to rotate the point p to the direction of the point p′.

Next a rotation factor is constructed to perform the rotation. The origin O, the point p
and the point p′ form a plane. k̂ is a unit vector in the plane and is orthogonal to the target
vector p. The rotation factor ekα has a k orthogonal rotation factor that is corresponding
to the direction of the unit vector k̂. Applying the rotation factor ekα to position number
p makes it rotate to the point represented by position number pekα, which has the same
direction of the point p′.
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4. Projections of position vectors in n-dimensional

spherical and Cartesian coordinate systems

Before extending results obtained from a three dimensional space to a higher n-dimensional
space, one may need to understand the projections from an n-dimensional space to a lower
dimensional space.

If the three dimensional coordinate space in Figure 1 is projected to a two-dimensional
plane from the direction of the RE axis towards the plane, Figure 4 illustrates the projection
result.

O
ORi

OR j

jc

ib

p

p
2RE

Figure 4. Projection of a three-dimensional coordinate space onto a two-dimensional plane

After the projection, the respective level of a three-dimensional (3D) space, a two-dimensional
(2D) plane, or a one-dimensional (1D) line is lowered by 1. The 3D coordinate space appears
2D on the projection plane, and the 2D plane formed by the RE axis and the ORi axis appears
1D. The 1D line of the RE axis appears as one point and overlaps with the origin O.

Next, the projections of position vectors from a higher dimension to a lower dimension
are presented and discussed.

4.1. 2D plane

Figure 5 illustrates the projections of a position vector in a 2D plane. In the figure, O
is the origin. RE is a real number axis. OR2 is an axis that is orthogonal to the RE axis.
Applying orthogonal rotation factor i2 = ei2

π
2 to any point in the RE axis makes the point

rotate counter-clockwise by angle π
2
and reach the OR2 axis. Thus, the i2 indicates the
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direction of the OR2 axis. For a regular 2D complex number plane, i2 is considered as the
imaginary unit i.

O RE

a

a

θ

r2

r2

1

p
2

2 i2

2

OR2

Figure 5. Projections of a position vector in a 2D plane

Applying an i2-based rotation factor ei2θ2 of angle θ2 to the point represented by real
number r2 in the RE axis makes the point rotate to the point represented by position number
p2. The r2 is the magnitude of p2.

The vectors with bold arrows in the figure denote the projections. The projection of the
position vector represented by p2 to the lower 1D dimension is the position number a1 or
the vector represented by a1 with a1 = r2cos(θ2). The projection of the position vector to
the direction of the orthogonal axis OR2 is a2i2 or the vector from the point a1 to the point
p2 with a2 = r2sin(θ2). It is noted that a1 is considered as a position number p1 in a lower
1D coordinate system.

The rotation and projections in the figure lead to

p2 = r2e
i2θ2 (23)

p2 = p1 + a2i2 (24)

p1 = a1 = r2cos(θ2) (25)

a2 = r2sin(θ2) (26)

The 2D equation set of (23)-(26) represent spherical and Cartesian coordinate systems in a
2D plane.
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4.2. 3D space

Compared with the 2D plane in Figure 5, one more orthogonal axis OR3 is added for the
coordinate system in a 3D space as illustrated in Figure 6. The OR3 axis is orthogonal to
the 2nd dimension axis-plane formed by the RE and OR2 axes in the lower dimensions.

O
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r
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p

p
2

r2
2

3

θ3

3

1

a2 i2

a3 i3

OR3

OR2

p
2r3

Figure 6. Projections of a position vector in a 3D space

The point represented by position number p2r3 is in the same plane as p2 and also in the
same direction. p2r3 has a magnitude of r3. From (23), p2 = r2e

i2θ2 . Thus, p2r3 = r3e
i2θ2 .

Applying an i3-based rotation factor ei3θ3 of angle θ3 to the point represented by p2r3 makes
the point rotate to the point represented by position number p3. Thus, p3 = r3e

i2θ2ei3θ3 . The
r3 is the magnitude of p3.

The vectors with bold arrows in the figure denote the projections. The position vector
represented by p2 in Figure 5 now becomes a projection in the current 3D space. The
projection of the p3 vector to the lower 2D dimension is the position vector of p2 with
r2 = r3cos(θ3). The projection of the p3 vector to the direction of the orthogonal axis OR3

is a3i3 with a3 = r3sin(θ3).

The above rotation and projections lead to

p3 = r3e
i2θ2ei3θ3 (27)

p3 = p2 + a3i3 (28)

r2 = r3cos(θ3) (29)
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a3 = r3sin(θ3) (30)

The 3D equation set of (27)-(30) represent spherical and Cartesian coordinate systems in a
3D space, with p2 for the lower dimension 2D given by the 2D equation set (23)-(26).

4.3. 4D space

Similarly, compared with the 3D plane in Figure 6, one more orthogonal axis OR4 is
added for the coordinate system in a 4D space as illustrated in Figure 7.

It is noted that Figure 7 is viewed from the 4D perspective. Logically, if the 4D space
occupies our 3D space and the 3D space is one dimension lower than the 4D, the 3D space
must appear as a 2D plane from the 4D viewpoint.

In the 4D space, the OR4 axis is orthogonal to the 3rd dimension axis-plane, which is
formed by the OR2 and OR3 axes in the lower dimensions. OR4 has the direction that follows
the right-hand rule with respect to the OR2 and OR3 axes.

O
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r3

r4

r2

θ4

p
4

4

ia
4 4

p3

θ3

OR2

OR3

a3 i3

p
3r4

Figure 7. Projections of a position vector in a 4D space

The point represented by position number p3r4 is in the same plane as p3 and also in the
same direction. p3r4 has a magnitude of r4. From (27) for p3, it follows that p3r4 = r4e

i2θ2ei3θ3 .
Applying an i4-based rotation factor ei4θ4 of angle θ4 to the point represented by p3r4 makes
the point rotate to the point represented by position number p4. Thus, p4 = r4e

i2θ2ei3θ3ei4θ4 .
The r4 is the magnitude of p4.

The vectors with bold arrows in the figure denote the projections. The position vector
represented by p3 in Figure 6 now becomes a projection in the current 4D space. The
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projection of the p4 vector to the lower 3D dimension is the position vector of p3 with
r3 = r4cos(θ4). The projection of the p4 vector to the direction of the orthogonal axis OR4

is a4i4 with a4 = r4sin(θ4).

The above rotation and projections lead to

p4 = r4e
i2θ2ei3θ3ei4θ4 (31)

p4 = p3 + a4i4 (32)

r3 = r4cos(θ4) (33)

a4 = r4sin(θ4) (34)

The 4D equation set of (31)-(34) represent spherical and Cartesian coordinate systems in a
4D space, with p3 for the lower dimension 3D given by the 3D equation set (27)-(30).

4.4. n-dimensional space

By the same token, Figure 8 shows the projections in an n-dimensional space.

O

rn

ORn-2

ORn-1
rn-2

θn

p
n

ORn

ia
n n

ia
n-1 n-1

θn-1
rn-1

p
n-1
p
n-1 rn,

Figure 8. Projections of a position vector in an n-dimensional space

From the n-dimensional space perspective, the n-1 dimensional space appears as a plane
in the figure. The ORn axis is orthogonal to the (n-1)th dimension axis-plane, which is
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formed by the ORn−2 and ORn−1 axes in the lower dimensions. ORn has the direction that
follows the right-hand rule with respect to the ORn−2 and ORn−1 axes.

The point represented by position number pn−1,rn is in the same plane as pn−1 and also
in the same direction. pn−1,rn has a magnitude of rn. Applying an in-based rotation factor
einθn of angle θn to the point represented by pn−1,rn makes the point rotate to the point
represented by position number pn.

The vectors with bold arrows in the figure denote the projections. The projection of the
pn vector to the lower (n-1)th dimension is the position vector of pn−1 with rn−1 = rncos(θn).
The projection of the pn vector to the direction of the orthogonal axis ORn is anin with
an = rnsin(θn).

The above rotation and projections lead to

pn = rne
i2θ2ei3θ3ei4θ4 ...einθn (35)

pn = pn−1 + anin (36)

rn−1 = rncos(θn) (37)

an = rnsin(θn) (38)

The n-dimensional equation set of (35)-(38) represent spherical and Cartesian coordinate
systems in an n-dimensional space, with pn−1 for the lower dimension given by the corre-
sponding n-1 equation set.

5. Generalization of n-dimensional spherical and

Cartesian coordinate systems

5.1. n-dimensional spherical coordinate system

For the generalization of the coordinate system construction, in the 2D plane, the or-
thogonal axis OR2 is orthogonal to the RE real number axis. The associated rotation factor
for the OR2 axis is ei2θ2 .

Then, in the 3D space, the orthogonal axis OR3 is introduced to be orthogonal to the 2nd-
dimension axis-plane formed by the RE and OR2 axes. The associated rotation factor for
the OR3 axis is ei3θ3 .

Further, in the 4D space, the orthogonal axis OR4 is introduced to be orthogonal to the
3rd-dimension axis-plane formed by the OR2 and OR3 axes. The associated rotation factor
for the OR4 axis is ei4θ4 .
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Finally, in the n-dimensional space, the orthogonal axis ORn is introduced to be orthogonal
to the (n-1)th dimension axis-plane formed by ORn−2 and ORn−1 axes. The associated
rotation factor for the ORn axis is einθn .

With (35), the position number in an n-dimensional spherical coordinate system is given
by

pn = rn

n∏
j=2

eijθj (39)

where rn is the magnitude of the position number and eijθj ∈ E in (2).

5.2. n-dimensional Cartesian coordinate system transformed from the spherical
coordinate system

From (24)-(26) for 2D, (28)-(30) for 3D and (32)-(34) for 4D, it follows that

p2 = r2(cos(θ2) + i2sin(θ2)) (40)

p3 = r3(cos(θ2)cos(θ3) + i2sin(θ2)cos(θ3) + i3sin(θ3)) (41)

p4 = r4(cos(θ2)cos(θ3)cos(θ4) + i2sin(θ2)cos(θ3)cos(θ4) + i3sin(θ3)cos(θ4) + i4sin(θ4)) (42)

Along with (36)-(38), the generalization of n-dimensional position number transformation
from spherical coordinates to Cartesian coordinates is given by

pn =
n∑

j=1

ajij (43)

where aj = rnEj and

Ej = sin(θj)
n∏

k=j+1

cos(θk)

with i1 = 1, sin(θ1) = 1, and
∏n

k=j+1 cos(θk) = 1 if j + 1 > n.

5.3. n-dimensional spherical coordinate system transformed from the Cartesian
coordinate system

For 2D, from (24)-(26), the magnitude of the position number is given by

r2 =
√

a21 + a22 (44)

The tuple of each dimension specific rotation angle is given by

(θ2) = (sin−1(
a2
r2
)) (45)
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Similarly, for 3D, from (28)-(30), the magnitude of the position number is given by

r3 =
√

a21 + a22 + a23 (46)

The tuple of each dimension specific rotation angle is given by

(θ2, θ3) = (sin−1(
a2
r2
), sin−1(

a3
r3
)) (47)

And for 4D, from (32)-(34) the magnitude of the position number is given by

r4 =
√

a21 + a22 + a23 + a24 (48)

The tuple of each dimension specific rotation angle is given by

(θ2, θ3, θ4) = (sin−1(
a2
r2
), sin−1(

a3
r3
), sin−1(

a4
r4
)) (49)

Along with (36)-(38), the generalization of n-dimensional position number transformation
from Cartesian coordinates to spherical coordinates is given by

rn =

√√√√ n∑
j=1

a2j (50)

for the magnitude and

(θ2, θ3, θ4, ..., θn) (51)

for (n-1)-tuple of angles with

θj = sin−1(
aj
rj
)

where θj is the rotation angle for the jth dimension with the corresponding magnitude

rj =

√√√√ j∑
k=1

a2k (52)

6. Generalization of multiplication algebra of

n-dimensional rotation factors

The generalization of multiplication algebra of rotation factors for the coordinate system
represented by Equation (39) is discussed next. The multiplication algebra involves the
interactions of rotation factors and orthogonal rotation factors across different dimension
levels.
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6.1. 3D rotation factors

For the 3D space, in Figure 6, the point represented by the i2-based rotation factor ei2θ2

is in the plane formed by the RE and OR2 axes. Applying the i3 orthogonal rotation factor
to the point makes it rotate to the OR3 axis. Thus, ei2θ2i3 = i3. On the other hand, as
discussed in section 3.4, applying the rotation factor ei2θ2 to a point represented by i3 in the
OR3 axis will not move the point. Thus, i3e

i2θ2 = i3. From the above, it follows that

ei2θ2i3 = i3e
i2θ2 = i3 (53)

For θ2 =
π
2
, Equation (53) leads to

i2i3 = i3i2 = i3 (54)

Equations (53) and (54) indicate that the orthogonal rotation factor i3 is multiplication
commutative with the orthogonal rotation factor i2 and the rotation factor ei2θ2 in the lower
dimension, and the multiplication result is always equal to the i3 itself.

6.2. 4D rotation factors

In Figure 7 for the 4D space, the 3D space in Figure 6 now appears 2D as the projection
from the 4D perspective. The OR4 axis is orthogonal to the 3rd-dimension axis-plane, which
is formed by the OR2 and OR3 axes. The point represented by the i3-based rotation factor
ei3θ3 is in the plane. Applying the i4 orthogonal rotation factor to the point makes it rotate
to the OR4 axis. Thus, ei3θ3i4 = i4. On the other hand, applying the rotation factor ei3θ3 to
a point represented by i4 in the OR4 axis will not move the point. Thus, i4e

i3θ3 = i4.

Further, from the 4D perspective, the 2nd-dimension axis-plane, which is formed by the RE
and OR2 axes in Figure 6 for the 3D, now appears 1D in Figure 7 for the 4D. Logically,
in Figure 7, the point represented by the i2-based rotation factor ei2θ2 is in the OR2 axis.
Applying the i4 orthogonal rotation factor to the point makes it rotate to the OR4 axis. Thus,
ei2θ2i4 = i4. On the other hand, applying the rotation factor ei2θ2 to a point represented by
i4 in the OR4 axis will not move the point. Thus, i4e

i2θ2 = i4.

From the above, it follows that

ei3θ3i4 = i4e
i3θ3 = ei2θ2i4 = i4e

i2θ2 = i4 (55)

With angle π
2
for orthogonal rotation factors, Equation (55) leads to

i3i4 = i4i3 = i2i4 = i4i2 = i4 (56)

Equations (55) and (56) indicate that the orthogonal rotation factor i4 is multiplication
commutative with the orthogonal rotation factors and rotation factors of i2, e

i2θ2 , i3, and
ei3θ3 in the lower dimensions, and the multiplication result is always equal to the i4 itself.
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6.3. n-dimensional rotation factors

Similarly, in Figure 8 for the n-dimensional space, the ORn axis is orthogonal to the
(n-1)th dimension axis-plane, which is formed by the ORn−2 and ORn−1 axes. The point
represented by the in−1 based rotation factor ein−1θn−1 is in the (n-1)th dimension axis-plane.
Applying the in orthogonal rotation factor to the point makes it rotate to the ORn axis.
Thus, ein−1θn−1in = in. On the other hand, applying the rotation factor ein−1θn−1 to a point
represented by in in the ORn axis will not move the point. Thus, ine

in−1θn−1 = in.

Further, from the n-dimensional perspective, in Figure 8, the point represented by the in−2

based rotation factor ein−2θn−2 is in the ORn−2 axis. Applying the in orthogonal rotation
factor to the point makes it rotate to the ORn axis. Thus, ein−2θn−2in = in. On the other
hand, applying the rotation factor ein−2θn−2 to a point represented by in in the ORn axis will
not move the point. Thus, ine

in−2θn−2 = in.

Still further, by the same token, in the n-dimensional coordinate system, all axes are mu-
tually orthogonal to each other. For a jth dimension with j lower than n-2, applying the
in orthogonal rotation factor to a point represented by eijθj in the jth dimension makes the
point rotate to the ORn axis. Thus, eijθj in = in. On the other hand, applying the rotation
factor eijθj to a point represented by in in the ORn axis will not move the point. Thus,
ine

ijθj = in.

And still further, applying the in orthogonal rotation factor twice to the point pn makes the
point rotate by angle π in the plane formed by the point pn and the ORn axis, with the
resultant position vector’s direction being reversed. Thus, pni

2
n = −pn. That is, i

2
n = −1.

From the above and with the generalization, it follows that

eijθj in = ine
ijθj = in (57)

where 2 ≤ j < n.

ijin = inij = in (58)

where 2 ≤ j < n.

i2j = −1 (59)

where 2 ≤ j ≤ n.

Equations (53)-(54), (55)-(56), and (57)-(58) indicate that the orthogonal rotation factors
ij and the rotation factors eijθj in the n-dimensional spherical coordinate system represented
by Equation (39) are multiplication commutative.

It is noted that the above results can also be obtained by the spherical-to-Cartesian
transformation in (43). Take (57) for example. The position number eijθj in = eijθjein

π
2

means that in (43), rn = 1, θj = θj, θn = π
2
and all other angles (θk with 2 ≤ k ≤ n − 1

excluding k = j) are 0. Thus, all Ej in (43) become 0 except for En, which is 1. That is, pn

= in, which is consistent with (57).
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6.4. Obtaining n-dimensional spherical-to-Cartesian transformation by rotation
factor multiplication algebra

Next, the spherical-to-Cartesian transformation equation in (43) is obtained by rotation
factor multiplication algebra.

In Equation (39), denote

Qj =

j∏
k=2

eikθk (60)

Equation (39) becomes

pn

rn
= Qn (61)

The result in (57) means

Qj−1ij = ij (62)

With (62), it follows that

Qn = Qn−1e
inθn = Qn−1(cos(θn) + insin(θn)) = Qn−1cos(θn) + insin(θn) (63)

With (63), it follows that

Qn−1 = Qn−2cos(θn−1) + in−1sin(θn−1) (64)

and

Qn−2 = Qn−3cos(θn−2) + in−2sin(θn−2) (65)

Qn may be obtained by continuing the iteration process and combining the iteration
results. Inserting the obtained Qn into (61) leads to Equation (43).

7. Summary

Based on the existence of the set of rotation factors and the concept of rotation factors
for rotating position vectors and numbers with positioning directions, the constructions of
three and higher n-dimensional complex number spherical coordinate systems are realized.

7.1. Methodology of increment in dimensional levels for coordinate system con-
struction

Starting from one-dimension represented by a real number axis, a 2nd-dimension orthog-
onal axis is added to form a plane where the associated rotation factors rotate real numbers
in the real axis into the plane. Then, the 3rd-dimension orthogonal axis is added to form a
3rd-dimension where the associated rotation factors rotate points in the 2nd-dimension into
the current higher dimension. And then, the 4th-dimension orthogonal axis is added to form
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a 4th-dimension where the associated rotation factors rotate points in the 3rd-dimension
into the current higher dimension. The process can be continued and generalized to the
nth-dimension.

7.2. Methodology for projections of position vectors in four-dimensional and
higher n-dimensional spaces

By examining the patterns of projections of position vectors in the two-dimensional plane
and three-dimensional space, the projection patterns are then extended to higher dimensional
spaces. A projection chain is established where a position vector that makes a projection
to a position vector in a lower dimension becomes the projection of a position vector in a
higher dimension. The projection patterns in the chain are consistent throughout with the
same mathematical formulas from nth dimension, down to 4th, 3rd, and 2nd.

The projections are helpful in understanding the geometric representation of position
vectors in four-dimensional and higher n-dimensional spaces, and provide not only the qual-
itative insights but also the quantitative precise results.

7.3. n-dimensional complex number (position number) spherical coordinate sys-
tem and transformations between Cartesian and spherical coordinates

Once the coordinate axis construction and the projections of position vectors are estab-
lished, the existence of the rotation factors and their associate rotation properties are the
natural fit for expressing the n-dimensional complex number spherical coordinate system
with inherent simplicity and succinctness.

The generalizations of the transformations from spherical coordinates to Cartesian co-
ordinates and vice versa are achieved by obtaining the relevant transformation formulas for
each dimensional level through the projection chain.

7.4. Multiplication algebra and interactions between rotation factors

One method for obtaining the multiplication and interactions between orthogonal rota-
tion factors and rotation factors in the same and across dimensional levels is by the geometric
representation where rotation factors are applied to position vectors and the resultant rota-
tions are examined.

Another method is by the transformation from spherical coordinates to Cartesian coor-
dinates as the transformation equation contains the interaction information.

The multiplication algebra method may also be used to obtain the transformation to the
Cartesian coordinate system from the spherical system. The three methods produce results
that are consistent with each other.
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7.5. Motion generation characteristics of rotation factors

The construction of the n-dimensional complex number spherical and Cartesian systems
is made possible by the rotation factors.

The existence of the set of the rotation factors along with the associated rotation prop-
erties is a gift from Nature. The position rotation represents motion. A rotation factor
generates a rotation or motion when it is applied to a position point or to a vector. It
represents an active force and empowerment tool for encouragement of the novel utilization.
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